Search results for "Fuzzy topology"
showing 6 items of 6 documents
Dual attachment pairs in categorically-algebraic topology
2011
[EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inh…
Fuzzy functions: a fuzzy extension of the category SET and some related categories
2000
<p>In research Works where fuzzy sets are used, mostly certain usual functions are taken as morphisms. On the other hand, the aim of this paper is to fuzzify the concept of a function itself. Namely, a certain class of L-relations F : X x Y -&gt; L is distinguished which could be considered as fuzzy functions from an L-valued set (X,Ex) to an L-valued set (Y,Ey). We study basic properties of these functions, consider some properties of the corresponding category of L-valued sets and fuzzy functions as well as briefly describe some categories related to algebra and topology with fuzzy functions in the role of morphisms.</p>
L -valued bornologies on powersets
2016
In M. Abel and A. ostak (2011) [1], the concept of an L-fuzzy bornology was introduced. Actually, an L-fuzzy bornology on a set X is a certain ideal in the family LX of L-fuzzy subsets of a set X. Here we propose an alternative approach to fuzzification of the concept of bornology. We define an L-valued bornology on a set X as an L-fuzzy subset B of the powerset 2X satisfying L-valued analogues of the axioms of a bornology. Basic properties of L-valued bornological spaces are studied. Our special interest concerns L-valued bornologies induced by fuzzy metrics and relative compactness-type L-valued bornologies in ChangGoguen L-topological spaces.
A construction of a fuzzy topology from a strong fuzzy metric
2016
<p>After the inception of the concept of a fuzzy metric by I. Kramosil and J. Michalek, and especially after its revision by A. George and G. Veeramani, the attention of many researches was attracted to the topology induced by a fuzzy metric. In most of the works devoted to this subject the resulting topology is an ordinary, that is a crisp one. Recently some researchers showed interest in the fuzzy-type topologies induced by fuzzy metrics. In particular, in the paper (J.J. Mi\~{n}ana, A. \v{S}ostak, {\it Fuzzifying topology induced by a strong fuzzy metric}, Fuzzy Sets and Systems, 6938 DOI information: 10.1016/j.fss.2015.11.005.) a fuzzifying topology ${\mathcal T}:2^X \to [0,1]$ …
A fuzzification of the category of M-valued L-topological spaces
2004
[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.
Soft ditopological spaces
2015
We introduce the concept of a soft ditopological space as the "soft Generalization" of the concept of a ditopological space as it is defined in the papers by L.M. Brown and co-authors, see e.g. L. M. Brown, R. Ert?rk, ?. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147 (2) (2004), 171-199. Actually a soft ditopological space is a soft set with two independent structures on it - a soft topology and a soft co-topology. The first one is used to describe openness-type properties of a space while the second one deals with its closedness-type properties. We study basic properties of such spaces and accordingly defined continuous mappings between…